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ABSTRACT 
 

Computer generated three-dimensional (3-D) models are being used at increasing rates 

in the fields of entertainment, education, research, and engineering. One of the aspects 

of interest includes the behavior and function of the musculoskeletal system. One such 

tool used by engineers is the finite element method (FEM) to simulate the physics 

behind muscle mechanics. There are several ways to represent 3-D muscle geometry, 

namely a bulk, a central line of action and a spline model. The purpose of this study is 

to examine how these three representations affect the overall outcome of muscle 

movement. This is examined in a series of phases with Phase I using primitive 

geometry as a simplistic representation of muscle. Phases II and III add anatomical 

representations of the shoulder joint with increasing complexity. Two methods of 

contraction focused on an applied maximal force (Fmax) and prescribed displacement. 

Further analyses tested the variability of material properties as well as simulated injury 

scenarios. The results were compared based on displacement, von Mises stress and 

solve time. As expected, more complex models took longer to solve. It was also 

supported that applied force is a preferred method of contraction as it allows for 

antagonistic and synergistic interaction between muscles. The most important result 

found in these studies was the consistency in the levels of displacement and stress 

distribution across the three different 3-D representations of muscle. This stability allows 

for the interchangeability between the three different representations of muscles and will
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permit researchers to choose to use either a bulk, central line of action or a spline 

model. The determination of which 3-D representation to use lies in what physical 

phenomenon (motion, injury etc.) is being simulated. 
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CHAPTER 1: 

INTRODUCTION 

 

Computer generated three-dimensional (3-D) anatomical models are frequently used in 

fields such as entertainment, education, research, engineering and a number of other 

industries. Advances in computed tomography (CT) and magnetic resonance imaging 

(MRI) have provided opportunities for patient specific 3-D modeling.1 Computer models 

of the musculoskeletal system are being increasingly used to study musculoskeletal 

functions, disorders and potential surgical treatments.2-9 Utilizing accurate 3-D 

representations of patient specific anatomy can help provide a scientific basis for 

studying normal musculoskeletal functionality, disorders and insight on how those 

disorders may be repaired. Biomedical engineers use computer-aided design (CAD) 

and the Finite Element Method (FEM) as standard tools in the research, development 

and performance of orthopedic implants, injury analysis, surgical repair, incident 

recreation, ergonomic development and a number of other applications.2-14 

 

One such area of interest, as applies to human motion studies and orthopedics, focuses 

on the computer simulated representation of muscle contraction. Studies of this area 

have utilized a variety of two-dimensional (2-D) and 3-D representations of muscle in 

conjunction with a mathematical formula representing muscle contraction.14,15 The 3-D 
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muscle geometry has been represented as a lump or bulk model, a cylinder 

representing a central line of action (or a small number working in conjunction) or a 

series of splines representing the general direction of muscle fibers.7,8,16-18  

 

Mathematically, muscle contraction is represented as variations of either the Hill’s 

muscle model19 or Huxley’s model20 of muscle contraction. Both the Hill and Huxley 

mathematical models are solving the same physiological process but use either a more 

phenomenological or a more biochemical/biophysical approach, respectively. Most of 

the current movement analysis software and recently published papers utilize the Hill 

model. The Huxley model is almost exclusively utilized by biophysicist and biochemists 

to understand the mechanisms of contraction at a molecular level. Huxley’s model is 

considered “elegant” but too complicated to serve directly as a mathematical 

representation of muscle contraction in motor control studies. Hill’s mathematical model 

is used almost as equally as exclusively by bioengineers and movement scientists.21 

The goal of this study is to develop a methodology comparing the three different 

representation of 3-D muscle geometry utilizing Hill’s mathematical model that is both 

accurate and time effective within a commercially available Finite Element software 

package. 

 

Anatomy 

 

Skeletal muscles are the contractile centers of human motion. They are connected to 

bones via tendons or aponeuroses at their respective origins and insertions. Certain 
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muscles may have more than one origin or insertion. When muscles contract, the fibers 

that make them up shorten to roughly 70% of their resting length. During contraction the 

muscle’s origin usually remains fixed while the resulting movement occurs at the 

insertion. There are three methods of skeletal contraction. One is reflexive, which as the 

name implies, is not voluntarily controlled. Tonic contraction is a slight contraction that 

basically give muscles their firmness or tone. The third type of contraction is phasic 

contraction which in turn consists of isometric contraction and isotonic contraction. 

Isometric contraction increases the muscle tension, but no muscle shortening occurs. 

Isotonic contraction results in changes to the muscle length.21-24  

 

Tendons are the dense fibrous tissues that connect muscles to bones. Collagen Type I 

makes up roughly 70-80% of a tendon’s dry weight. Tendons vary in size and shape 

based on the attachment points for each muscle. They can be narrow chord-like 

structures or broad and sheet-like. Typically, tendons consist of the outer “tendon” 

structure and the internal structure, called the aponeurosis. The “tendon” portion 

provides attachment to bone, while the aponeurosis area provides anchorage to the 

muscle fibers. The primary role of a tendon is to transmit the generated muscle forces to 

the bone. Since muscles can only pull and not push, tendons need to be stiff and strong 

under tension. It is this strong and stiff characteristic of tendons that prevent them from 

substantially being deformed during loading.21-24 

 

The structural unit of the muscle is the muscle fiber. Muscle fibers usually have a 

diameter of 10-60 µm. Fiber length can vary, depending on the length of the muscle and 
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whether or not the fiber extends only for a part or the entirety of the muscle. These 

fibers are made up of myofibrils which in turn consist of myofilament bundles. These 

myofilaments are divided transversely by the zwichenscheibe (Z) bands which are the 

demarcation line for sarcomeres. Each sarcomere is roughly 2.5 µm long. Two types of 

myofilaments are present in the sarcomeres. The thinner (5 nm diameter) actin 

molecules and the thicker (12 nm) myosin molecules act in conjunction to produce 

muscle forces. The actin filaments make up the anisotropic (A) bands in skeletal muscle 

while the myosin filaments make up the isotropic (I) bands. A globular head on the 

myosin filaments acts as a “ratchet” that creates a cross-bridge to the neighboring actin 

filaments. As a result, the two filaments slide parallel to one another and generate the 

muscular force. It should be noted that the resultant muscle contraction is not generated 

by a contraction of the filaments themselves but rather the sliding of the actin and 

myosin filaments. The lengths of the actin and myosin filaments are not altered during 

muscular contraction.21-24  

 

The gross anatomy that this study will focus on consists of the human shoulder joint and 

the skeletal muscles that make up the rotator cuff. The shoulder joint consists of the 

humeral head and where is articulates with the scapula, namely the glenoid cavity. The 

glenoid cavity is relatively shallow and is slightly deepened by the cartilage making up 

the glenoid labrum. The humeral head is held in place by the four muscles of the rotator 

cuff. These four muscles are the supraspinatus, infraspinatus, teres minor and the 

subscapularis. Each of these muscles has their origin in the scapula and insert into the 

lateral/superior aspect of the humeral head. A loose fibrous capsule surrounds the 
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glenohumeral joint. It attaches along the margin of the glenoid cavity and the anatomical 

neck of the humerus.25 

 

Clinically, the rotator cuff is a common injury of the upper limb. Activities that bring the 

upper limb above the horizontal plane (such as throwing, tennis, swimming, or weight 

lifting to name a few) present a higher risk of rotator cuff injury. Repeated motions of the 

upper limb can cause the humeral head and rotator cuff to impinge on the 

coracoacromial arch which can cause inflammation of the rotator cuff as a whole. This 

inflammation can have a degenerative effect on the supraspinatus and may cause a 

complete tearing of the muscle. As a result the supraspinatus will be no longer 

functional and initiation of abduction of the upper limb is no longer possible.25 

 

Visible Human Project 

 

The field of biomedical engineering applies the principles of engineering to a biological 

setting. Technological advances in the past few decades have made it possible to 

perform CAD and FEA on biological structures. These advances have opened up new 

avenues for biomedical engineering research and development. With a push toward 

patient specific medical procedures, speed and accuracy in the development of 3-D 

anatomical models are important.26,27 Medical imaging is one of the primary tools used 

in surgical planning and sources for engineering research. However, each imaging 

modality has its limitations. CT scanning works best when focusing on bones, contrast 

agents or larger structures. The finer structures such as ligaments and joint capsules 
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can be difficult to visualize using CT scans. MRI scans are better at imaging soft 

tissues, but often fail to have clean edges which present segmentation issues and 

require a sound anatomical knowledge to do so. 

 

One of the first datasets created that addresses some of the limitations of medical 

image modalities is the National Library of Medicine’s Visible Human Project. The 

initiative was undertaken with the goal to create a digital volumetric collection of 

complete normal adult male and female anatomy. The Visual Human Male (VHM) 

dataset was completed in August of 1993. The specimen was that of a 39-year-old male 

incarcerated on death row in the Texas prison system and who had donated his body to 

science. The man’s body was frozen and serially milled over a period of 128 days in a 

custom cryomacrotome developed by the University of Colorado. A series of film and 

digital photographs were taken for each 1 mm slice through the specimen.28 

 

The VHM dataset images are comparable to modern CT and MRI scans with a slice 

thickness of 1mm and a pixel size of 0.353 x 0.353 mm. In addition, this dataset has the 

added benefit of color which aids in the segmentation process by being able to cleanly 

distinguish between structures such as tendon and ligaments. The 1,878 axial images 

are tiff files that are 1760 x 1024 pixels in size with a resolution of 72 dpi and in total 

take up roughly 9.5 gigabytes of space. The dataset is public domain and available from 

the National Library of Medicine (NLM).26 Following release of the VHM, a number of 

similar projects were undertaken. In the years that followed, the NLM released the 
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Visible Human Female. Other groups released their own versions such as the Visible 

Korean Project and the Visible Chinese Project.29,30 

 

What makes the Visible Human datasets unique is the ability to observe the anatomy of 

an entire individual in situ. The spacing of organs and structures remain in their natural 

location as they were in a living body. For the first time, the availability of these high-

resolution images provided the opportunity for the accurate reconstruction of the human 

body. High-resolution anatomically accurate 3-D models of the Visible Human Male and 

the Visible Chinese projects have been visualized and manipulated using readily 

available software and analyzed and measured using application based software for 

CAD and FEA.16, 31 

 

Finite Element Analysis 

 

The Finite Element Method (FEM) or Finite Element Analysis (FEA) has become 

standard practice in the development of models and simulations for a variety of 

engineering projects. The term was first coined by R.W.Clough in 1960 with his 

discussion concerning plane stress analysis.32 The lessons learned from the early 

applications of FEA were quickly adopted and utilized the fields of thermal, fluid flow 

and piezoelectric process. FEM is now used in transportation, electrical, 

communications, housing, environmental, acoustical, as well as biological and medical 

applications. The ability to model, visualize, analyze, simulate, prototype and fabricate 
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structures has opened up the possibilities and the usefulness of computers in the 

engineering process.32-35 

 

The main goal of FEM is to determine the distribution of a property throughout the 

structure based on a set of partial differential equations. A few common examples of 

these potential properties can be temperature disbursement, the displacement from an 

applied stress, or the distribution of an electrical charge. At the beginning of this 

process, it is up to the engineer to calculate how the acting agent is applied to the 

geometry. This agent can take the form of force, electrical current, temperature and so 

on. The result is an approximated solution that numerically represents the distribution of 

a problem that would be considerably difficult to obtain manually. FEM can be applied to 

one-dimensional, two-dimensional, three-dimensional and four-dimensional problems. 

For 3-D geometries, the model is sectioned into a number of simplistic geometric 

elements. These elements range from tetrahedral (four-sided), brick (8-sided) to 

hexahedral (6-sided) in shape. The number of elements is finite and in turn each 

element has a set of known physical laws and finite parameters applied to it. The 

process creates a set of linear algebraic equations that are run simultaneously to solve 

the system.33,.35 

 

The real objects and their relative components can be rather complex and often need to 

be decimated so that the finite element software package can handle the geometry. The 

structure’s geometry is created from the collection of elements that provide a discretized 

approximation of the object’s curves in a piecewise fashion. This occurs via a process 
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known as “meshing”. The accuracy of a curve’s representation hinges on the number of 

elements that are used in the mesh. It follows that the closest representation of a 

structure would have the highest number of elements. However, each element requires 

its own computation. Due to software and hardware limitations, it is essential to cap the 

number of elements used. On account of these limitations, the finer details of a structure 

are often omitted. It is up to the designer or modeler to determine whether or not the 

smaller details are critical to the overall structure. Exclusion is considered acceptable, if 

these details play only an aesthetic or minimal role in a model’s performance. The 

results of the analysis need to be observed with these omissions firmly in mind. In the 

end, all finite element analysis results in the approximation of the structure or structures 

being studied. It may be a very close approximation, but it is still an approximation 

nonetheless.34 

 

The creation of a mesh can be an arduous process. The length of time needed in mesh 

creation lies in the object’s complexity and the experience of the analyst. Meshing via 

triangulation is the most common form of element creation. Unlike brick meshes, the 

creation of tetrahedral meshes is highly automated in most pre-processing software. 

Tetrahedral meshes also have the added advantage of being able to tackle complex 

organic geometries. However, the speed and ease of tetrahedral meshes comes at the 

cost of accuracy. Brick element meshes are considered more accurate, but their lack of 

automation decreases their use.34 
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Once the mesh is created the object is assigned material properties. Objects can be 

made up of multiple materials based on the Young’s modulus and shear modulus of the 

desired material. These properties can be assigned to a group of elements or to each 

individual element. Commercially available FEM packages often come with a built-in 

library of known material values. These usually consist of different types of metals and 

other materials such as wood or glass. Most packages do not come with biological 

materials and the properties for these items need to be furnished from experimental 

data. A number of publications exist that have suggested material properties for objects 

of a biological origin, such as bone or soft tissue.34-38 The solving of the computational 

model utilizes a computer’s Central Processing Unit (CPU) and the Random Access 

Memory (RAM). Obviously, the functionality of a computer improves as its processor 

and memory power increases. 

 

There are a number of Finite Element (FE) software packages available for commercial 

use. A few of note include COMSOL41, ANSYS42 and Abaqus.43 Each package is 

designed to accept a variety of file formats. Templates for common applications, such 

as electrical, thermal, acoustical, structural, fluids scenarios, are usually provided. All of 

these packages allow for user customization so the analyst has full control of their 

model and simulation. As multi-physics packages, it is possible to include more than 

one physics interaction. For example, a finite element analysis can be run on a circuit 

for multiple scenarios. One analysis can compute the flow of electricity, while another 

determines the heat that corresponds with the generated electric current. Structure 
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geometry can be created using native creation tools or imported from another software 

package.  

 

Human Applications 

 

In practice, FEA can be used as a precursory step to predict the outcome of a physical 

event before actually running an experiment or manufacturing an expensive prototype. 

Applying FEM to the study of human anatomy permits detailed analyses of complex 

virtual anatomical models under simulated experimental conditions. Despite the current 

level of today’s computer technology, there are still limitations to applying FEA for 

biological models. The complex geometries and the subtle details of anatomical 

structures can prove too intricate for FEA to work. As a result, 3-D models must often be 

simplified to such an extent that a significant reduction in anatomical detail may result. It 

is unclear as to how much simplification can occur before the simulation no longer 

represents a real life scenario. More recently, studies have been conducted on what 

role mesh density plays in biological and anatomical scenarios. Recent studies by the 

author suggest that mesh density can be dramatically reduced without drastically 

affecting FEA results.44 However, others have concluded the opposite and stated that 

predicted results depended heavily on mesh density.3 The importance the role mesh 

density plays in finite element analysis may lie in what manner of physical activity is 

being simulated. 
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FEA has been applied to humans and has assisted in a variety of medical and design 

fields.45 The mechanical behavior of the femur using a 2-D model was analyzed as early 

as 1972.4 Blood flow10, arterial wall pressure11, foot tread analysis6, orthopedic implant 

design and testing5, traumatic brain injury analysis13 and a number of other medically 

applicable studies have utilized the tools of the finite element method. Medical implant 

design and performance have also benefitted from finite element simulations.7 

Furthermore, the FE method has been applied to human models for design purposed in 

the automobile industry. One such example involves the creation of a model of the 

human body for restraint system testing applications.12 

 

Of all the representations of biological tissues, the representation of bone is fairly 

standard in most computer models. Bones are treated as rather stable elements that 

react to muscle movements. It is the representation of muscle, on the other hand, that 

has variety of both very simple and very complex ways in how it is modeled in computer 

simulations.  

 

There are three main ways of representing muscles in 3-D. The first type looks at a 

“lump” model to capture the muscles’ bulk shape.16 Another type of muscle model 

consists of one or more cylinders or tubes to represent the muscle geometry. Very often 

this type of muscle has at least one central tube representing the muscle’s central line 

of action (CLOA).7,8 Software, such as Software for Interactive Musculoskeletal 

Modeling (SIMM),46 LifeModeler,47 and AnyBody48 have been developed to simulate the 

biomechanics of movement in both humans and animals. These software packages 
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often utilize segments to control the model’s movement.49 The CLOA may be 

accompanied by additional cylinders or segments to represent a particularly broad 

muscle origin or subdivisions within a muscle. There have been attempts to model the 

complex 3-D muscular geometry by focusing on the fibers that make up the muscles 

themselves. Some studies focus on the perpendicular arraignment of muscle fibers to 

try and capture shear stress and analyze stretch distributions during muscle exertion.50 

Still others try capture the 3-D arrangement and lengths of the muscle fibers to capture 

muscle behavior.17 These studies all focus on the 3-D geometry of the muscle to varying 

degrees of complexity. 

 

Mathematical Models for Muscle Contraction 

 

Biological soft tissues tend to have highly nonlinear mechanical behavior with 

associated passive elements that can either be described as nonlinear hyperplastic or 

viscoelastic. Skeletal muscles have the added complexity in that they can generate 

tension forces resulting in the contraction and relaxation of their geometry. There are 

two current mathematical models for muscle contraction, namely the Hill’s model19 and 

the Huxley or Sliding Filament Theory of Muscle Contraction.20 The Hill’s model for 

muscle contraction is being used as the basis for the commercial human modeling 

systems such as LifeModeler and AnyBody. The Hill’s model is chiefly used by 

bioengineers and movement scientists. Huxley’s model takes a more biochemical 

approach to muscle contraction by looking at displacement of muscle cross-bridges as 

the actin and myosin fibers slide across one another. Both mathematical models can be 
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entered into standard FE software packages. Both the Hill and Huxley mathematical 

models are solving the same physiological process but use either a more 

phenomenological or more mechanistic approach, respectively. Most of the current 

movement analysis software and recently published papers utilize the Hill model most 

likely on account of its relatively straight forward and simplified approach as compared 

to the Huxley method. For the purposes of this study, Hill’s model of muscle contraction 

will be used.21,22 

 

The Hill’s Equation for Tetanized Muscle contraction was developed by Archibald Hill 

from his observations of frog sartorius muscle contractions. The initial equation is 

ሺݒ ൅ ܾሻ ൅ ሺܲ ൅ ܽሻ ൌ ܾሺ ଴ܲ ൅ ܽሻ 

where P represents tension in a muscle, v represents the velocity of contraction and a, 

b and P0 are constants. Hill discovered that there is a hyperbolic relation between P and 

v. A higher load will have a slower contraction velocity. The higher the velocity, the 

lower the tension. This relation was in direct contrast to the viscoelastic behavior of 

passive materials and it was shown that the active contraction of a muscle had no 

resemblance to the viscoelasticity of a passive material. However, the original Hill 

equation only focused on the quick-release of a muscle in tetanized conditions, and did 

not account for single twitch, slow muscle release or strain as it varies with time.21, 22, 24  

 

Expanding on the original model, Hill’s Three-Element Model was developed. This 

model represents an active muscle composed of a 1) contractile element (CE), 2) a 

series element (SE) which is arranged in a series with the contractile element and 3) a 
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parallel element (PE) which accounts for the elasticity of a muscle at rest. A schematic 

can be seen in Figure 1.1.  

 

Figure 1.1: Hill’s Three Element model 

 

The CE is freely extendable when inactivated, but capable of shortening when 

activated. The SE is a nonlinear spring arranged in series with the CE and allows for 

rapid change in muscle from inactive to active. The PE is another nonlinear spring 

arranged in parallel to the CE and SE elements, and is responsible for the passive 

behavior of the muscle. The active force of the CE is generated by the myosin and actin 

cross-bridges of the muscle. The net force relationship to muscle length is the 

combination of the force-length of the passive and active elements of the model 

represented by ܨ ൌ ௉ாܨ ൅ ஼ாܨ	݀݊ܽ	ௌாܨ ൌ ܮ ௌா. The muscle length is represented asܨ ൌ
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ܮ	݀݊ܽ	௉ாܮ ൌ ஼ாܮ ൅ ଴ܮ .ௌாܮ
ெ represents the rest length of the muscle. When it is fully 

activated, it creates the peak isometric muscle force, ܨ଴
ெ. When inactive the ܨ஼ா ൌ ௌாܨ ൌ

0 and the muscle has a force in the PE. When activated, the resulting muscle force of 

the CE depends on the muscle length and the velocity of the CE’s deformation.51  

 

The maximal force (ܨ଴
ெ) can be calculated by using either the physiological cross 

sectional area (PCSA) or the anatomical cross sectional area (ACSA). The ACSA takes 

a cross section and calculates the area through a plane central to the belly of the 

muscle. The PCSA creates a multi-faceted plane perpendicular to the flow of muscle 

fibers. For bi-pennate or multipennate muscles, this “plane” may be a multifaceted 

zigzag through the muscle. The equation is calculated as: ܲܣܵܥ ൌ ௠௨௦௖௟௘	௩௢௟௨௠௘

௙௜௕௘௥	௟௘௡௚௧௛
 = 

௠௨௦௖௟௘	௠௔௦௦

ௗ௘௡௦௜௧௬	∙௙௜௕௘௥	௟௘௡௚௧௛
. The total force is calculated as Total force = PCSA·Specific Tension. 

For pennate muscles, the Muscle force = Total force·cosθ, where θ is the angle of the 

muscle fibers. For muscles where all the fibers run parallel the PCSA = ACSA. Another 

aspect on importance in determining muscle force is the relative mixture of fast and 

slow twitch fibers within the muscle. This combination of fast and slow twitch fibers has 

a direct effect on the muscles relative maximum velocity of contraction.52, 53 

 

Study Organization 

 

The study was conducted in a series of three phases.  Each phase increased the level 

of complexity. The level of displacement, von Mises stress, model complexity and solve 
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time were all recorded and compared across the bulk, central line of action and spline 

scenarios for each phase. 

 

Phase I 

 

Phase I began with a pilot study examining a very simple geometry as a representative 

for anatomical structures. This was done with a basic geometry of two cubes 

(representing bone) connected by one central bar (representing the muscle) with 

representative tendons. This central muscle was represented as a lump model, a 

central cylinder model and a series of splines. Each representation of the muscle then 

contracted utilizing the Hill mathematical formula. The same amount of force was 

applied in each case. The resulting stresses and the overall displacement was 

compared to see if there was any statistical difference between the three different 

representations of muscle contraction. The total time for each scenario, from model 

construction through the analysis was recorded to test for time efficiency. Figure 1.2 

contains the Phase I lump, central line of action and spline geometries respectively.  

 

Phase II 

 

Phase II consists of a similar methodology, with the simple geometry being replaced by 

an anatomical model derived from the VHM dataset. Two bones, consisting of the left 

scapula and left humerus were created with one of the muscles of the rotator cuff, the 

teres minor, connecting the two. A representative joint capsule was created to hold the 
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joint in place during movement. The teres minor was represented as a bulk muscle, a 

series of splines, as well as a tube running from the centroid of the origin, through the 

central axis of the muscle and to the insertion. Each scenario was run using the Hill 

mathematical representation of contraction. The same amount of force was applied in 

                   

 

Figure 1.2: Phase I representations of the lump, central line of action and spline muscle 
geometries 
 

each case. The displacement of most distal point of the humerus was compared for the 

three different scenarios. The total time for each scenario, from model construction 

through the analysis was recorded to test for time efficiency. Figure 1.3 contains 

representations of lump, central line of action and spline geometries for Phase II. 
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Phase III 

 

Phase III expanded on Phase II with an increasingly more complex shoulder model. The 

muscles of the rotator cuff (the supraspinatus, the teres minor, the infraspinatus and the 

subscapularis) were represented. The shoulder muscles contracted to make a series of 

standard physical motions, such as abduction or forward shoulder flexion. The 

displacement of most distal point of the humerus was compared for the three different 

scenarios. The total time for each scenario, from model construction through the 

analysis was recorded to test for time efficiency.  

            

Figure 1.3: Phase II representations of the lump, central line of action and spline muscle 
geometries. 
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To accomplish the three phases of the project, the number of specific aims are 

proposed:  

1. Create the 3-D geometry representing bone and muscle. 

2. Import and run the created geometry into a standard finite element software 

package where the Hill mathematical model is used. 

3. Determine what effects the different representations of 3-D muscle geometry in 

combination with linear material properties and maximal muscle contraction have 

on resulting stresses and displacement. 

 

Conclusion 

 

Technological advancements in computers, simulation and medical imaging have 

opened new avenues for musculoskeletal biomechanical research. The creation of 

anatomically accurate human models is now possible and CAD and FEA studies using 

these models are gaining in popularity. The time needed for the creation of anatomical 

models and the development of the muscle models all hinge on the complexity of the 

geometric representation. The more complex a finite element model is, the longer it 

takes to create. With the medical industry’s push for more patient specific implants and 

medical procedures, total case turnaround time is essential. However, researchers must 

be careful that they do not sacrifice accuracy in the process. One of the key features of 

FEA is that it is a simplified approximation of a real physical occurrence. The question 

remains as to how much simplification can occur before it affects the performance of a 

model.  
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The purpose of this project was to examine how different levels of simplification and 

representation of muscle geometry can affect the performance of a finite element 

anatomical model. This was examined by utilizing three different geometric muscle 

representations in conjunction with the Hill mathematical model. Model creation time, 

FEA solve time and results for the three different scenarios were compared. 
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CHAPTER 2: 

PHASE I: SIMPLE GEOMETRY 

 

Abstract 

 

Phase I is a pilot study examining a muscle contraction simulated in a commercially 

available finite element analysis (FEA) software package using very simple geometry as 

a stand-in for anatomical structures. This was done with a basic geometry of two cubes 

(representing bone) connected by one central bar (representing the muscle) with 

representative tendons. This central muscle was represented as a lump model, a 

central cylinder model and a series of splines. Each representation of the muscle then 

contracted by using the physiological cross-sectional area to determine the maximum 

Force in agreement with the Hill mathematical formula. The same amount of force was 

applied in each case. The resulting von Mises stresses and the overall displacement 

were compared to see if there is any statistical difference between the three different 

representations of muscle contraction. The total time for each scenario is recorded to 

test for time efficiency. 
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Introduction 

 

Skeletal muscle is one of the major areas of interest in the study biomechanics and 

human motion studies. Skeletal muscles have the ability to generate their own force and 

do not rely on external forces to create strain and deformation. Several muscle models 

exist that attempt to describe the mechanical behaviors of skeletal muscle. These 

muscle models are built around either the Hill or Huxley mathematical models for 

muscle contraction.19,20 The Hill model is what is predominantly in biomechanical 

studies.21 Research on the modeling of force-length relationships, force-velocity 

relationships and physiological (or anatomical) cross-sectional area has provided 

mathematical tools to assist the simulation of skeletal muscle contraction.21, 22, 52-58 

 

The mathematical representation of skeletal muscle, has been used in conjunction with 

a variety of two-dimensional (2-D) and three-dimensional (3-D) representations of 

muscle geometries. 3-D muscle geometry has been represented as a lump or bulk 

model, a cylinder representing a central line of action (CLOA) (or a small number 

working in conjunction) or a series of splines representing the direction of muscle 

fibers.21, 57-59 

 

In an effort to test the different 3-D representations of skeletal muscle, this study was 

undertaken to directly compare the bulk, CLOA and spline muscle geometries. This 

study examined a very simple geometry as a stand-in for anatomical structures. This is 

done with a basic geometry of two cubes (representing bone) connected by one central 
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bar (representing the muscle) with representative tendons. This central muscle is 

represented as a lump model, a central cylinder model and a series of splines. Each 

representation of the muscle contracted Hill mathematical formula utilizing the 

physiological cross-sectional area (PCSA) to calculate the maximum force (Fmax). The 

same amount of force was applied in each case. The resulting stresses and the overall 

displacement was compared to see if there was any statistical difference between the 

three different representations of muscle contraction. The total solve time for each 

scenario was recorded to test for time efficiency. 

 

Materials and Methods 

 

Models 

 

The 3-D geometry was created within 3-matics by Materialise. It was decided to use a 

design pipeline that utilized the import methods of the various software used in this 

study. The geometries used in Phase II and Phase III required that the anatomical 

geometry be made within the Mimics software package. The FEA package COMSOL 

does have the ability to great primitive based geometries natively, but the anatomical 

models from Phase II and Phase III will require the meshing and export capabilities of 3-

matic. The decision to use 3-matic as the initial modeling method for Phase I was made 

so the meshing treatment for the geometries used in each phase would be uniform. 
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The three geometries used in Phase I had the same basic structure. Two cubes with the 

dimensions of 10 cm x 10 cm x 10 cm represented bone. A central geometry 

represented the muscle-tendon complex with a total length of 25 cm. The muscle was 

20 cm in length with the tendons at either end measuring 2.5 cm long. Geometries 

representing a bulk, central line of action and a series of splines were created. The bulk 

geometry muscle and tendon all had a radius of 2.5 cm. The muscle was subdivided 

into five segments each with a 4 cm length. The CLOA had a radius of 0.5 cm with a 

similar subdivision of five 4 cm segments. The spline model consisted of 33 splines with 

a 1 mm radius each. Each spline was also subdivided into five 4 cm segments. A 

representative image of the bulk, CLOA and spline geometries can be seen in Figure 

2.1. 

 

After the geometries were created, each structure was connected as a non-manifold 

mesh. Once the initial step of the modeling was complete, each model was subjected 

analysis, quality control and remeshing. In this program the 3-D geometry was cleaned 

up and converted to a volumetric mesh. The initial model clean up began with a Triangle 

Reduction filter which had a flip threshold angle of 15° and a geometrical error of 0.05 

mm. Model cleanup continued by applying a smoothing factor of 0.7 to the object. 

Surface subdivisions on the mesh were assigned at this step to ensure at a 

standardized shape and location was maintained through the process. Once these 

steps were complete, the model was then inspected for any intersecting or overlapping 

triangles. Any errors in mesh quality were fixed. Each model then underwent a series of 

processing steps involving: auto-remeshing and quality reduction of triangles of the 
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geometry. The overall model was inspected a final time for intersecting or overlapping 

triangles and then converted into a volumetric mesh.  

 

Calculations 

 

For Phase I, muscle contraction was simulated for Fmax generation. Thereby the 

muscle was at its’ highest level of contraction and the contraction velocity was zero. 

Fmax was calculated using the PCSA * Muscle Specific Tension. The muscle specific 

tension (or muscle stress constant) was assumed to be 330 kPa.21 PCSA is calculated 

as the volume of the muscle divided by the optimal fiber length. This experimental 

muscle was treated as a parallel muscle. For that reason a muscle length to optimal 

muscle fiber ratio of 0.9 was used.16 The optimal fiber length was determined to be 18 

cm. PCSA was the calculated as the volume of the muscle (392.7 cm3) divided by the 

fiber length (18 cm) for a PCSA of (21.82 cm2). Fmax resulted in 720 N (21.82 cm2 * 33 

N/cm2). The data was entered into the Hill equation  and 

resulted in the stereotypical force-velocity and power-velocity curves.19,21,23 

 

COMSOL 

 

A 3-D solid Structure mechanics module was used for the muscle contraction. A step 

function was used as the basis for the applied force. The idea was to capture the 

muscle at its most contracted state (velocity = 0 at F=Fmax). Upon the completion of the 

geometric modeling, the surface and volume meshes were then exported as MPHTXT  
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Figure 2.1: Representative lump (A), central line of action (B) and spline (C) geometries. 
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files, the COMSOL ready mesh format. With the mesh imported, material properties 

were assigned to the relative geometries. 

 

The representative bones were given a Young’s modulus of 1.0 x 1010 Pa, a Poisson’s 

ratio of 0.3 and a density of 2570 kg/m3.60 The representative muscle was given a 

Young’s modulus of 1.162 x 106 Pa, a Poisson’s ratio of 0.4 and a density of 1056 

kg/m3.60 The tendon was given a Young’s modulus of 1.6 x 106 Pa, a Poisson’s ratio of 

0.497 and a density of 1670 kg/m3.61 The left most face of the left bone block was 

constrained. Boundary loads were applied as force per unit area. Since PCSA was used 

instead of ACSA, the applied force of 36.67 N/cm2 was applied in the x and –x axes. 

The boundary loads were applied to the face of each segment. The forces were only 

applied along the x axis as the muscle did not deviate in the y or z axis. The model was 

then solved and displacement and von Mises stress were collected. Solution time data 

was also collected. This was done for the bulk, CLOA and spline models. FEA analysis 

with COMSOL was run on a Dell Precision T7500 with an Intel Xeon CP X5690 @ 3.47 

GHz and 96 GB of RAM.  

 

Results 

 

Three different representations of a stylized muscle were created. The different 

representations consisted of a bulk, CLOA, and spline constructions. The meshes for 

each representation had 126,704, 75,023 and 2,243,129 tetrahedral elements 

respectively. The solve time in COMSOL for each scenario was 64 seconds, 69 
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seconds and 930 seconds respectively. Displacement was captured from the far face of 

the right block. This represented the greatest amount of displacement on each scenario. 

Von Mises stress was also captured from the data. Measures of central tendency and a 

95% confidence interval were calculated. The element count, solve time, displacement 

and von Mises stress can be seen in Table 2.1. A visual representation of the 

displacement can be seen in Figure 2.2. A visual representation of von Mises stress 

distribution can be seen in in Figure 2.3. 

Table 2.1: Phase 1 Data 

Scenario Element Count Solve Time Displacement 
von Mises 

Stress 
Bulk 126,704 64 s 63.25 mm 39.91 N/cm^2 

CLOA 75,023 69 s 63.75 mm 40.4 N/cm^2 
Spline 2,243,129 930 s 63.48 mm 41.4 N/cm^2 

Average - - 63.49 mm 40.57 N/cm^2 
St. Dev. - - 0.25 mm 0.76 N/cm^2 

95% Conf. Inter. -  - 
63.21 - 

63.77mm 
39.71 –  

41.43 N/cm^2 
 

Discussion and Conclusions 

 

The data concerning element count and solve time was not surprising. As a rule with 

FEA, a higher the number of elements corresponds to a longer solve time. However, 

even with the most complex geometry of the spline model, the time needed to solve the 

analysis was relatively short. These solve times are anticipated to increase in Phases II 

and III as the model complexity increases. 
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Figure 2.2: Displacement for lump (A), central line of action (B) and spline (C) 
geometries. 
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Figure 2.3: von Mises stress distribution for lump (A), central line of action (B) and 
spline (C) geometries. 
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An average displacement 63.49 mm with a 95% confidence interval of 63.21 mm - 

63.77 mm falls within the range of the 60 mm – 70mm expected from the maximum 

contraction of a 200 mm muscle.62 For each scenario, the von Mises stress displayed 

that the tendon acted as a damper in force transmission from muscle to bone as 

anticipated.63,64 The von Mises stress appears relatively stable as well with a 95% 

confidence interval of 39.71 N/cm2 – 41.43 N/cm2 but there does appear to be an 

upward trend as the diameters of the muscle geometries narrow. This trend may be on 

account of the greater relative deformation of the narrower muscle representation. The 

relative uniformity of the displacement and von Mises stress suggest that the different 3-

D representations of muscle geometry are able to capture similar phenomena. These 

initial findings suggest that 3-D muscle representation, be it a bulk, CLOA or spline, may 

be equally valid when simulating displacement and von Mises stress distribution, and 

therefore human motion as well. The ultimate displacement and deformation of the 

moving bone was strikingly similar.  

 

In Phase II, the level of complexity is increased with the simple mathematical geometry 

being replaced by the organic biological geometries of a human joint.  
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CHAPTER 3: 

PHASE II AND PHASE III: ANATOMICAL GEOMETRY 

 

Abstract 

 

Phase I was a pilot study examining a muscle contraction simulated in a commercially 

available finite element analysis (FEA) software package using very simple geometry as 

a stand-in for anatomical structures. This was done with a basic geometry of two cubes 

(representing bone) connected by one central bar (representing the muscle) with 

representative tendons. Phase II increased the complexity by replacing the simple 

geometries with actual anatomical geometries: the scapula, humerus and teres minor. 

Phase III furthered the complexity by adding the remaining muscles of the rotator cuff to 

the model. The teres minor, supraspinatus, infraspinatus and subscapularis muscles are 

each represented as a lump model, a central cylinder model and a series of splines. 

Each representation of the muscles was then contracted using two methods. The first 

method used the physiological cross-sectional area to determine the maximum Force in 

agreement with the Hill mathematical formula and allowed the maximal forces to 

determine the resulting contraction. The same amount of force was applied in each 

case. The second method utilized a prescribed displacement of 50% of the muscles’ 

length. The resulting von Mises stresses and overall displacement were compared to 
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see if there was any statistical difference between the three different representations of 

muscle contraction. The total time for each scenario was recorded to test for time 

efficiency. Two additional simulations were run for Phase III. This included a 10%+/- 

adjustment to the Young’s modulus and Possion’s ratio of each material property as 

well as a simulated injury of a partial tear of each of the muscles of the rotator cuff using 

the spline muscle representation. Comparisons were made against the original results 

of Phase III to test for significance. 

 

Introduction 

 

Skeletal muscle is one of the major areas of interest in the study biomechanics and 

human motion studies. Skeletal muscles have the ability to generate their own force and 

do not rely on external forces to create strain and deformation. Several muscle models 

exist that attempt to describe the mechanical behaviors of skeletal muscle. These 

muscle models are built around either the Hill or Huxley mathematical models for 

muscle contraction.19,20 The Hill model is what is predominantly in biomechanical 

studies.21 Research on the modeling of force-length relationships, force-velocity 

relationships and physiological (or anatomical) cross-sectional area has provided 

mathematical tools to assist the simulation of skeletal muscle contraction.21, 22, 52-58 

 

The mathematical representation of skeletal muscle, has been used in conjunction with 

a variety of two-dimensional (2-D) and three-dimensional (3-D) representations of 

muscle geometries. 3-D muscle geometry has been represented as a lump or bulk 
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model, a cylinder representing a central line of action (CLOA) (or a small number 

working in conjunction) or a series of splines representing the direction of muscle 

fibers.21,57-59 

 

In an effort to test the different 3-D representations of skeletal muscle, this study was 

undertaken to directly compare the bulk, CLOA and spline muscle geometries. Phase II 

of this study applied the three different ways to represent muscle by applying them to 

the teres minor in conjunction with the scapula and humerus. The teres minor is 

represented as a lump model, a central cylinder model and a series of splines. The 

geometry of the scapula and humerus remain unchanged throughout this phase. Two 

methods to simulate contraction were conducted. For one method, each representation 

of the muscle contracted Hill mathematical formula utilizing the physiological cross-

sectional area (PCSA) to calculate the maximum force (Fmax). The same amount of 

force was applied in each case. The second method, prescribed a contraction of 50% 

the muscle length. The resulting stresses and overall displacement were compared to 

see if there was any statistical difference between the three different representations of 

muscle contraction. The total solve time for each scenario was recorded to test for time 

efficiency. The differences in the displacement between the two contraction methods 

were also compared.  

 

For Phase III, the entire musculature of the rotator cuff (consisting of the Supraspinatus, 

Infraspinatus, Subscapularis and Teres Minor) was created. The maximum force and 

prescribed displacement methods to simulate contraction were conducted. The resulting 
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stresses and overall displacement were again compared to see if there was any 

statistical difference between the three different representations of muscle contraction. 

The total solve time for each scenario was recorded to test for time efficiency. The 

differences in the displacement between the two contraction methods were also 

compared. 

 

Materials and Methods 

 

Data Set 

 

The anatomy for this study was created based on the National Library of Medicine’s 

(NLM) Visible Human Male (VHM) dataset from the Visible Human Project. The entire 

dataset is available for download upon request from the NLM’s website.28 In total, the 

dataset consists of 1,878 slices as a tagged image file format (tiff) each with a resolution 

of 1760 x 1024. Each slice is 1 millimeter thick with a pixel size of 0.3528 millimeters. 

The slices are numbered in a fashion ranging from 1,001 to 2,878. A segmented set of 

the VHM dataset was made available and utilized to facilitate the creation of 3-D 

geometries. The initial segmentation was conducted by hand in Adobe’s Photoshop. 

Every structure segmented was assigned its own red, green and blue (RGB) value. This 

was a lengthy process that took a number of hands a considerable amount of time. An 

example of an original image and a segmented image can be seen in Figures 3.1 and 

3.2 respectively. 
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Figure 3.1: Unsegmented slice 1300 of the Visible Human Male. (Courtesy of National 
Library of Medicine: Public Domain) 

 

 

Figure 3.2: Segmented slice 1300 of the Visible Human Male. (Courtesy of Dr. Don R. 
Hilbelink) 
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Models 

 

The 3-D geometry was created via a multistep process within the volume rendering 

software package Mimics by Materialise. The image slices relevant to the scapula, 

humerus and the associated structures of the rotator cuff were imported into Mimics. 

This range began with image 1260 and extended through 1610 for a total of 351 

images. For Phase II only the teres minor needed to be modeled. However for Phase III, 

the remaining muscles of the rotator cuff were also modeled. Due to their close 

proximity, interrelationship and influence the geometries have on each other, the 

supraspinatus, infraspinatus and subscapular had to be modeled simultaneously to 

prevent erroneous mesh overlaps and intersections.  

 

Initially, the segmented data set was imported into Mimics. The scapula, humerus, 

rotator cuff muscles and their associated tendons were isolated and 3-D models were 

created. These initial models were rough and it was decided that some further 

refinement to the segmentation was warranted. These models were exported as 

stereolithographs (STLs) for further refinement. Figure 3.3 contains an example of some 

of the initial “rough” results from the segmented muscle set.  

  

Secondly, an unsegmented VHM dataset was imported into Mimics. The STLs of the 

geometries of interest were imported into this Mimics file. Masks were generated from 

the imported geometries to use as a guide and a springboard to improve on the 

segmentation. The resulting masks were edited and new 3-D models were generated. 
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Figure 3.4 contains an example of the segmentation editing. This editing involved the 

removal or addition of pixels that belong to their respective structures. These models, 

once again, were exported as STLs so they could be imported into the software 

package 3-Matics (Materialise) for remeshing and further mesh cleanup.  

 

 

Figure 3.3: Initial rough geometry. 

 

Mesh clean up began with the wrapping of each geometry individually. This process 

closes any holes that may be present and makes a watertight mesh. Further cleanup 

involved the searching for and subsequent removal of any overlapping or intersecting 

triangles. Once the initial cleanup was completed, the CLOA and the spline geometries 

were created using each muscle’s bulk model as a base. The bulk, CLOA and spline 

geometries were connected to the scapula and humerus as a non-manifold mesh.  
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Figure 3.4: Segmentation, mask editing and cleanup 

 

The CLOA for all muscles had a radius of 1.25 mm. The splines for all muscles had a 

radius 0.5 mm each. CLOA and spline representations were straight for muscles. The 

CLOA and spline representations for tendons curved along the path of the tendon. The 

representative tendons for the CLOA scenario were placed at the centroid of the 
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respective tendon’s insertion, with muscles extending from the musculotendon interface 

to the centroid of the origin. Tendons for splines were placed at the centroid of the 

insertion and then spaced evenly at 4 mm apart along the insertion footplate. The 

number of splines used was dictated by the size of the footplate of their respective 

insertion. The insertion footplate size was the limiting factor in spline density and 

number on account of the size disparities between the origin surface area and the 

insertion surface area. Splines representing the muscle extended from the 

musculotendon interface and were distributed along the surface representing the origin. 

The teres minor has 7 splines. The supraspinatus has 12 splines. The infraspinatus has 

6 splines. The subscapularis has 14 splines. Origin and insertion locations for each 

representative muscle was determined from personal knowledge, the VHM dataset as 

well as experimental results found in literature.68,69 

 

Each model was subjected to further analysis, quality control and remeshing. This final 

model clean up began with a Triangle Reduction filter which had a geometrical error of 

0.05 mm. Once these steps were complete, the model was then inspected for any 

intersecting or overlapping triangles. Any errors in mesh quality were fixed. Each model 

then underwent a series of processing steps involving: auto-remeshing and quality 

reduction of triangles of the geometry both had a geometrical error of 0.05 mm and a 

maximum triangle edge length of 10mm. The overall model was inspected a final time 

for intersecting or overlapping triangles and then converted into a volumetric mesh 

which also controlled for a maximum triangle edge length of 10 mm. The multiple 

checks for intersecting and overlapping triangles were performed as redundancy 
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measures on account that volumetric remeshing is impossible if they are present. A 

representative image of the bulk, CLOA and spline geometries of Phase II can be seen 

in Figure 3.5. A similar representative image of Phase III can be seen in Figure 3.6. 

 

Calculations 

 

For Phase II and Phase III, musculotendon properties were gathered from experimental 

data found in literature and the 3-D model itself. This included the optimal muscle fiber 

lengths and pennation angles (alpha).70-72 Fmax was calculated using the PCSA * 

Muscle Specific Tension. The muscle specific tension (or muscle stress constant) was 

assumed to be 33 N/cm2.21,70 PCSA is calculated as the volume of the muscle divided 

by the optimal fiber length. The volumes of the teres minor, supraspinatus, infraspinatus 

and subscapularis were captured from the mesh geometry. The data was entered into 

the Hill equation  and resulted in the stereotypical force-

velocity and power-velocity curves.19,21,58 Muscle contraction was simulated for Fmax 

generation. Thereby the muscle was at its’ highest level of contraction and the 

contraction velocity was zero. Since the muscle pathways are off the x,y,z axes, cosine 

values for the force vectors were calculated for the bulk, CLOA and spline scenarios. 

Tables 3.1, 3.2, 3.3 and 3.4 contain summaries of the numeric data for the teres minor, 

supraspinatus, infraspinatus and subscapularis respectively.  
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Figure 3.5: Representative lump (A), central line of action (B) and spline (C) geometries 
of Phase II, teres minor. 
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Figure 3.6: Representative lump (A), central line of action (B) and spline (C) geometries 
of Phase III, supraspinatus, infraspinatus, teres minor and subscapularis. 
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Table 3.1: Teres Minor Musculoskeletal Numeric Data 
 

Teres Minor Muscle Architecture 

  
Volume 

Opt. F. 
L. 

PCSA 
Sp. 
Ten. 

Fmax 
  

cm3 cm cm2 N/cm2 N 

  47.91 5.72 8.38 33 276.40   

Bulk and CLOA cosines and force vectors 

  
Cosine α X force 

Cosine 
β 

Y force 
Cosine 

γ 
Z force 

Bulk/CLOA 0.6376 176.24 -0.5991 -165.59 0.4842 133.83 

Spline cosines and force vectors 

  Cosine α X force 
Cosine 

β 
Y force 

Cosine 
γ 

Z force 

Spline 1 0.7838 216.64 -0.5199 -143.70 0.3395 93.84 
Spline 2 0.7812 215.92 -0.5605 -154.92 0.2747 75.93 
Spline 3 0.7632 210.95 -0.5396 -149.15 0.3554 98.23 
Spline 4 0.6944 191.93 -0.5288 -146.16 0.488 134.88 
Spline 5 0.6657 184.00 -0.5112 -141.30 0.5436 150.25 
Spline 6 0.6503 179.74 -0.5213 -144.09 0.5526 152.74 

Spline 7 0.6273 173.39 -0.5428 -150.03 0.5585 153.37 
 

Table 3.2: Supraspinatus Musculoskeletal Numeric Data 
 

Supraspinatus Muscle Architecture 

  Volume Opt. F. L. PCSA Sp. Ten. Fmax   
cm3 cm cm2 N/cm2 N 

  88.23 3.28 13.05 33 680.28   

Bulk and CLOA cosines and force vectors 

  Cosine α X force Cosine β Y force Cosine γ Z force

Bulk/CLOA 0.7797 530.41 -0.621 -422.45 0.08 53.42 

Spline cosines and force vectors 
  Cosine α X force Cosine β Y force Cosine γ Z force

Spline 1 0.8957 609.33 -0.4412 -300.14 -0.0549 -37.35 

Spline 2 0.8265 562.25 -0.5344 -363.54 0.1772 120.55 

Spline 3 0.8424 573.07 -0.5226 -355.51 0.1318 89.66 

Spline 4 0.857 583.00 -0.5152 -350.48 -0.011 -7.48 

Spline 5 0.7675 522.11 -0.6368 -433.20 0.0735 50.00 

Spline 6 0.8412 572.25 -0.5394 -366.94 0.0389 26.46 

Spline 7 0.8144 554.02 -0.573 -389.80 0.0915 62.25 

Spline 8 0.7885 536.40 -0.5925 -403.07 0.165 112.25 

Spline 9 0.6881 468.10 -0.6796 -462.32 0.2542 172.93 
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Table 3.2 Continued 
 

Spline 10 0.7577 515.45 -0.6468 -440.01 0.0867 58.98 

   Spline 11 0.7224 491.43 -0.6886 -468.44 0.063 42.86 

Spline 12 0.759 516.33 -0.6503 -442.39 0.0335 22.79 

 

Table 3.3: Infraspinatus Musculoskeletal Numeric Data 
 

Infraspinatus Muscule Architecture 

  Volume Opt. F. L. PCSA Sp. Ten. Fmax   
cm3 cm cm2 N/cm2 N 

  225.01 6.76 33.29 33 1098.42   
Bulk and CLOA cosines and force vectors 

 Cosine α X force Cosine β Y force Cosine γ Z force 
Bulk/CLOA 0.6956 764.06 -0.5589 -613.91 0.4513 495.72 

Spline cosines and force vectors 

 Cosine α X force Cosine β Y force Cosine γ Z force 
Spline 1 0.7822 859.18 -0.4708 -517.14 0.4081 448.27 
Spline 2 0.7968 875.22 -0.5266 -578.43 0.2963 325.46 
Spline 3 0.7671 842.60 -0.5192 -570.30 0.3769 413.99 
Spline 4 0.7325 803.59 -0.514 -563.59 0.4463 490.22 
Spline 5 0.6068 666.52 -0.49 -538.23 0.6259 687.50 
Spline 6 0.6496 713.53 -0.485 -532.73 0.5851 642.69 

 

Table 3.4: Subscapularis Musculoskeletal Numeric Data 
 

Subscapularis Muscle Architecture 

  Volume Opt. F. L. PCSA Sp. Ten. Fmax   
cm3 cm cm2 N/cm2 N 

  262.24 8.92 29.40 33 970.17   

Bulk and CLOA cosines and force vectors 

  Cosine α X force Cosine β Y force Cosine γ Z force 

Bulk/CLOA 0.4304 417.56 -0.8427 -817.56 0.3236 313.95 

Spline cosines and force vectors 
  Cosine α X force Cosine β Y force Cosine γ Z force 

Spline 1 0.6432 624.01 -0.48 -465.68 -0.1635 -158.62 
Spline 2 0.5464 530.10 -0.8201 -795.64 -0.1697 -163.64 
Spline 3 0.5164 501.00 -0.8552 -829.69 -0.0441 -42.78 
Spline 4 0.4541 440.55 -0.8523 -826.88 0.2597 251.95 
Spline 5 0.3954 383.61 -0.8004 -776.52 0.4505 437.06 
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Table 3.4 Continued 
 

Spline 6 0.5172 501.77 -0.85 -823.64 0.0996 96.63 
Spline 7 0.5066 491.49 -0.8622 -836.48 0.0058 5.63 
Spline 8 0.4579 443.24 -0.8448 -819.60 0.2769 268.64 
Spline 9 -0.8656 -839.78 -0.478 -463.74 0.149 143.56 

Spline 10 0.3686 357.60 -0.7183 -696.87 0.5901 572.50 
Spline 11 0.3748 363.62 -0.7982 -773.39 0.4715 457.44 
Spline 12 -0.2731 -264.95 0.6784 658.16 -0.682 -661.66 

Spline 13 0.3627 351.88 -0.7686 -745.67 0.527 511.28 

Spline 14 -0.5401 -529.28 0.841 824.16 0.019 18.42 

 

COMSOL 

 

A 3-D solid Structure mechanics module was used for the muscle contraction. A step 

function was used as the basis for the applied force. The idea was to capture the 

muscle as it held and maintained its most contracted state (velocity = 0 at F=Fmax). 

Upon the completion of the geometric modeling, the surface and volume meshes were 

then exported as MPHTXT files, the COMSOL ready mesh format. With the mesh 

imported, material properties were assigned to the relative geometries. The 

representative bones were given a Young’s modulus of 1.0 x 1010 Pa, a Poisson’s ratio 

of 0.3 and a density of 2570 kg/m3.60 The representative muscle was given a Young’s 

modulus of 1.162 x 106 Pa, a Poisson’s ratio of 0.4 and a density of 1056 kg/m3.60 The 

tendon was given a Young’s modulus of 1.6 x 106 Pa, a Poisson’s ratio of 0.497 and a 

density of 1670 kg/m3.61 The scapula was constrained to serve as the nonmoving 

aspect of the shoulder joint. Contact pairs were created so the bones, muscles and 

tendons would interact and collide with one another. Boundary loads were applied in 

Newtons for the Bulk scenario. Normalized boundary loads (Force/PSCA) were applied 

as force per unit area for the CLOA and Spline scenarios to account for the geometries’ 
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smaller diameters. The forces were applied along the x, y and z axes according to the 

relative cosine α, β, or γ of the geometry. The model was then solved and displacement 

and von Mises stress were collected. Solution time data was also collected. This was 

done for the bulk, CLOA and spline models for Phase II and Phase III. The distance 

displacement was measured on the most inferior point of the humerus’ trochlea.61 It was 

anticipated that the von Mises stresses would display that the tendon acted as a 

damper in force transmission from muscle to bone.63,73 FEA analysis with COMSOL was 

run on a Dell Precision T7500 with an Intel Xeon CP X5690 @ 3.47 GHz and 96 GB of 

RAM.  

 

However unlike Phase I, COMSOL was unable to resolve a solution to any scenario for 

Phase II or Phase III. The default error threshold prevented COMSOL from prevented a 

solution. With the error thresholding removed, the results became anatomically 

impossible. The solve times, displacement and von Mises stress could not be 

established. Troubleshooting was undertaken to resolve this issue.  

 

Alternative Attempts 

 

To address the unexpected behavior of the phase scenarios, alterations to the model 

were conducted. A sphere with a 5 mm radius at the centroid of the humeral head was 

created. This sphere was fixed in place to provide a center of rotation for the model. 

Additionally, the way the muscle contraction was modeled was also examined. Two 
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scenarios, one involving the application of the Fmax to the muscle and one involving 

limiting the range of muscle contraction by prescribed displacement were conducted.  

 

The model was meshed and volumized in 3-matic and then exported into COMSOL. 

Once the mesh was imported contact pairs for the sphere were established. The 

internal sphere was made stationary as was the scapula. Forces were placed on the 

boundary between the tendon and the muscle to allow for muscle contraction. Similar to 

the initial attempt, muscle contraction was simulated for Fmax generation. The 

calculations in Tables 3.1, 3.2, 3.3 and 3.4 contain values that were used as the applied 

forces for Phase II and Phase III. 

 

An additional scenario of limiting the length of contraction was used. A prescribed 

displacement for Phase II and Phase III simulated a 50% shortening of each muscle. It 

was decided to use 50% since several sources provided a range of contraction from 

30% to 70% of a muscles resting length.65-67 The midpoint for each muscle were 

calculated as an x,y,z value and distance value for the bulk, CLOA and spline 

scenarios. Tables 3.5, 3.6, 3.7 and 3.8 contain summaries of the numeric data for the 

teres minor, supraspinatus, infraspinatus and subscapularis respectively.  
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Table 3.5: Teres Minor Prescribed Displacement Data 

Bulk and CLOA Shortening Distance (mm) 

  Delta X Delta Y Delta Z 

Bulk/CLOA -27 25.37 -20.5 

Spline Shortening Distance (mm) 

  Delta X Delta Y Delta Z 
Spline 1 -17.53 11.63 -7.6 
Spline 2 -20.32 14.58 -7.14 
Spline 3 -23.23 16.42 -9.32 
Spline 4 -25.22 19.11 -17.72 
Spline 5 -29.11 21.2 -22.54 
Spline 6 -33.32 28.81 -29.66 

Spline 7 -32.03 25.68 -27.22 

 

 

Table 3.6: Supraspinatus Prescribed Displacement Data 

Bulk and CLOA Shortening Distance (mm) 

  Delta X Delta Y Delta Z 

Bulk/CLOA -27 25.37 -20.5 

Spline Shortening Distance (mm) 

  Delta X Delta Y Delta Z 
Spline 1 -41.22 20.3 2.53 
Spline 2 -22.09 14.28 -4.74 
Spline 3 -32.41 20.1 -5.07 
Spline 4 -48.08 28.9 0.62 
Spline 5 -36.48 30.26 -3.49 
Spline 6 -48.13 30.86 -2.23 
Spline 7 -22.5 22.22 -8.31 
Spline 8 -32.24 24.22 -6.74 
Spline 9 -47.52 33.43 -5.36 

Spline 10 -34.84 29.74 -3.99 
Spline 11 -15.59 14.9 -1.37 

Spline 12 -24.2 20.84 -1.09 
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Table 3.7: Infraspinatus Prescribed Displacement Data 

Bulk and CLOA Shortening Distance (mm) 

  Delta X Delta Y Delta Z 

Bulk/CLOA -29.9 24 -19.39 

Spline Shortening Distance (mm) 

  Delta X Delta Y Delta Z 
Spline 1 -27.1 16.3 -14.1 
Spline 2 -50 33.14 -18.65 
Spline 3 -49.08 33.22 -24.15 
Spline 4 -35.5 24.91 -21.63 
Spline 5 -38.6 31.17 -39.82 

Spline 6 -35.21 26.32 -31.72 

 

Table 3.8: Subscapularis Prescribed Displacement Data 
 

 

Additionally, to examine if the effect of the different geometries was consistent 

regardless of material properties, scenarios were run for a 10% increase and a 10% 

Bulk and CLOA Shortening Distance (mm) 

  Delta X Delta Y Delta Z 

Bulk/CLOA -21.48 42.06 -16.16 

Spline Shortening Distance (mm) 

  Delta X Delta Y Delta Z 
Spline 1 27.92 -32.47 -7.1 
Spline 2 17.82 -26.75 -5.56 
Spline 3 20.69 -34.26 -1.77 
Spline 4 27.13 -42.21 -0.95 
Spline 5 24.5 -46 14.01 
Spline 6 37.37 -63.6 0.43 
Spline 7 22.27 -36.61 4.29 
Spline 8 23.89 -48.36 27.22 
Spline 9 21.95 -40.51 13.28 

Spline 10 21.27 -36.85 5.37 
Spline 11 20.4 -43.46 25.67 
Spline 12 14.79 -31.33 21.48 
Spline 13 23.11 -45.04 37 

Spline 14 16.1 -39.99 40.2 
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decrease in the Young’s modulus and Poisson’s ratio. This experiment examined the 

effect of a more and less stiff material behaved under contraction. For the stiffer 

scenario, the Young’s moduli for the bone, muscle and tendon were increased to 1.0 x 

1011 Pa, 1.162 x 107 Pa, and 1.6 x 107 Pa and the Poisson’s ratio reduced to 0.27, 0.36 

and 0.4473 respectively. For the less stiff experiment the Young’s moduli for the bone, 

muscle and tendon were decreased to 1.0 x 109 Pa, 1.162 x 105 Pa, and 1.6 x 105 Pa 

respectively. The Poisson’s ratio increased to 0.33 for bone, 0.44 for muscle but stayed 

at 0.497 for tendon on account the maximum limit to a Poisson’s ratio value is 0.5. The 

density of each material remained the same throughout the two experiments. 

Contraction from the application of Fmax and prescribed displacement was then 

conducted. Displacement, von Mises stress and solve time was recorded for 

comparison. 

 

Additionally, a simulated injury was conducted utilizing the spline muscle representation. 

The number of splines representing each muscle was reduced by one-third. The 

numbers of splines reduced was rounded down as mathematically necessary. Teres 

minor was reduce from 7 to 5 splines. Infraspinatus was reduced from 6 to 4 splines. 

Supraspinatus was reduced from 12 to 8 splines. Subscapularis was reduced from 14 to 

10 splines. The splines were removed superiorly/anteriorly in a systemic fashion for 

each structure so that each muscle had a representative partial “tear.” The applied force 

and prescribed displacement were applied to mimic the muscle contraction. The 

resulting data was compared against the “uninjured” spline results. 
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Results 

 

Initial Attempts at Phase II and III Muscle Contraction 

 

Three different scenarios of each muscle were created. The different representations 

consisted of a bulk, CLOA, and spline constructions. The meshes for each 

representation of Phase II had 204,092, 133,384 and 270,500 tetrahedral elements 

respectively. The meshes for each representation of Phase III had 374,065, 159,620 

and 845,083 tetrahedral elements respectively. Each mesh successfully imported into 

COMSOL. However, using default convergence error thresholds no scenarios for 

Phases II or III were solvable. When these error safeguards were removed, the resulting 

values for displacement and von Mises stress were well beyond anything anatomically 

possible. A representative image showing an almost 2 meter level of displacement with 

bizarre levels of deformation can be seen in Figure 3.7. 

 

Alternative Attempts at Phase II and III Muscle Contraction 

 

In addition to the muscle of the rotator cuff, the shoulder joint also have several other 

structures, such as ligaments and cartilage that help keep the humeral head in the joint 

socket. These structures limit the joint and help maintain the center of rotation. An 

internal sphere at the centroid of the humeral head was added. Anatomically, this 

sphere serves to keep the humeral head within the joint as a stand in for the ligaments 
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that would make up the joint capsule. This internal sphere serves as a center of rotation 

for the humerus.  

 

 

Figure 3.7: Anatomically impossible results with error threshold removed 

 

The addition of internal sphere slightly altered the tetrahedral count for each Bulk, 

CLOA and Spline mesh. The meshes for each representation of Phase II had 203,533, 

143,815 and 263,524 tetrahedral elements respectively. The meshes for each 

representation of Phase III had 376,209, 170,070 and 851,575 tetrahedral elements 

respectively. Each mesh successfully imported into COMSOL and successfully solved 

for both Fmax and prescribed displacement. For comparative purposes, measurements 

were taken at the same point (the tip of the trochlea) which can be seen in Figure 3.8. 

Table 3.9 contains the numerical data for displacement and von Mises for each scenario 
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of Phase II. Table 3.10 contains the numerical data for displacement and von Mises 

stress for each scenario of Phase III. Table 3.11 contains data comparing the initial 

findings of Phase III with the more and less stiff scenarios. Table 3.12 contains data 

comparing the original data of the non-injured spline model for Phase III against the 

injured data.  

 

 

 

Figure 3.8: Measurement Point 
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Table 3.9: Phase II: Teres Minor Results Data 

Resultant Displacement from Prescribed Displacement (mm)  
Muscle Type X Y Z Time Von Mises (N/m2) 

Bulk 0.69 0.27 0.06 1 h 9' 42" 3.43x10e10 
CLOA 0.76 1.81 0.17 13' 12" 1257.1 
Spline 1.01 3.04 0.11 2 h 56' 4" 3.678x10e10 

Resultant Displacement from Applied Force (mm)  
Muscle Type X Y Z Time Von Mises (N/m2) 

Bulk 1.19 2.12 0.24 1 h 33' 56" 7.5x10e10 
CLOA 0.92 0.62 0.02 14’ 16”  1.3x10e25 
Spline 1.78 2.13 0.40 6 h 32' 17" 2.55x10e10 

 
 

Table 3.10: Phase III: Rotator Cuff Results Data 

Resultant Displacement from Prescribed Displacement (mm)  
Muscle Type X Y Z Time Von Mises (N/m2) 

Bulk 0.03 0.75 0.01 2 h 30' 54" 2.73x10e13 
CLOA 2.61 1.20 0.40 38' 3" 9.7x10e9 
Spline 2.10 1.76 0.53 7 h 7' 12" 1.47x10e12 

Resultant Displacement from Applied Force (mm)  
Muscle Type X Y Z Time Von Mises (N/m2) 

Bulk 1.84 3.15 0.91 5 h 15' 36" 5.68x10e12 
CLOA 0.54 1.81 0.11 46' 52" 1.64x10e10 
Spline 3.43 5.40 0.44 10 h 22'12" 3.61x10e13 

 

Table 3.11: Phase III: Rotator Cuff with Variable Material Properties 

Scenarioa,b 
X 

(mm) 
Y 

(mm) 
Z 

(mm) 
Time 

Von Mises 
(N/m2) 

Stiffer Material Properties 

Stiff Bulk N 0.03 0.62 0.01 3 h 11' 6" 5.66x10e12 

Stiff Bulk PD 1.79 3.09 0.87 4 h 56' 31" 4.24x10e12 

Stiff CLOA N 0.30 0.99 0.23 50' 6" 2.00x10e7 

Stiff CLOA PD 0.62 1.80 0.10 48' 59" 4.35x10e9 

Stiff Spline N 1.17 0.88 0.34 7 h 51' 3" 2.97x10e11 

Stiff Spline PD 3.33 5.13 0.52 11 h 3' 27" 3.01x10e13 

DIFFERENCE 

Stiff Bulk N 0.00 -0.13 0.00 +40' 12" -2.16x10e13 
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Table 3.11 Continued 
 

Stiff Bulk PD -0.05 -0.06 -0.04 -19" 5' -1.44x10e12 

Stiff CLOA N -2.31 -0.21 -0.17 +12' 3" -9.68x10e9 

Stiff CLOA PD 0.08 -0.01 -0.01 +2' 7" -1.21x10e10 

Stiff SPLINE N -0.93 -0.88 -0.19 +43' 51" -1.17x10e12 

Stiff Spline PD -0.10 -0.27 0.08 +41' 15" -6.00x10e12 

Looser Material Properties 

Loose Bulk N 0.52 1.32 0.66 3 h 24" 2.80x10e13 

Loose Bulk PD 1.79 3.09 0.87 5 h 33' 31" 6.73x10e12 

loose CLOA N 3.22 2.01 1.32 42' 41" 5.75x10e20 

Loose CLOA PD 0.61 1.85 0.16 47' 33" 3.87x10e11 

Loose Spline N 2.94 2.22 1.17 6 h 58' 3" 6.45x10e12 

Loose Spline PD 3.39 5.11 0.49 10 h 55' 25" 4.38x10e13 

DIFFERENCE 

Loose Bulk N 0.49 0.57 0.65 +53' 6" +7.00x10e11 

Loose Bulk PD -0.05 -0.06 -0.04 +17' 55" +1.05x10e12 

loose CLOA N 0.61 0.81 0.92 +4' 38" +5.75x10e20 

Loose CLOA PD 0.07 0.04 0.05 +41" +3.51x10e11 

Loose Spline N 0.84 0.46 0.64 -9' 9" +4.98x10e12 

Loose Spline PD -0.04 -0.29 0.05 +33' 13" +7.70x10e12 

a: N = Applied Force, b: PD = Prescribed Displacement 
 

Table 3.12: Phase III: Rotator Cuff Normal vs. Injured 

Resultant Displacement from Uninjured Shoulder (mm)  

Muscle Contraction Method X Y Z Elements Time 
Von Mises 

(N/m2) 

Spline Applied Force 2.1 1.76 0.53 851575 7 h 7' 12" 1.47x10e12 

Spline Prescribed Displacement 3.43 5.4 0.44 851575 10 h 22' 12" 3.61x10e13 

Resultant Displacement from Injured Shoulder (mm)  

Muscle Contraction Method X Y Z Elements Time 
Von Mises 

(N/m2) 

Spline Applied Force 2.28 2.13 0.4 599293 5 h 38' 49" 3.31x10e12 

Spline Prescribed Displacement 1.01 3.04 0.11 599293 6 h 54' 9" 6.66x10e11 

Difference between Normal vs. Injured Shoulder 

Muscle Contraction Method X Y Z Elements Time 
Von Mises 

(N/m2) 

Spline Applied Force 0.18 0.37 -0.13 -252282 -1 h 28' 23" 1.91x10e12 

Spline Prescribed Displacement -2.42 -2.4 -0.33 -252282 -3 h 28' 3" -3.54x10e13 
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Discussion and Conclusions 

 

Initial Attempts at Phase II and III Muscle Contraction 

 

The data concerning element count and its associated increase with the addition of 

more complex geometries is not surprising. However, the inability to solve each 

simulation was unexpected. The default error threshold of COMSOL prevented 

convergence of a solution.  

 

Troubleshooting efforts involved checking and rechecking the mathematical 

calculations, model scales as well as the units for each numerical value. No errors in 

this regard were found. The musculotendon parameters of volume, PCSA, Fmax were 

all compared against known applications of the VHM dataset and were comparable.70 A 

table comparing the values can be found in Table 3.13. Any potential differences may 

be on account that Garner et al used images at 5 mm slice increments, while this study 

used the full 1 mm slice increments.70 Furthermore, since many calculations are a result 

from the same optimal fiber length values from literature, the difference in volumes 

would account for the difference in the resulting PCSA and Fmax values.71,72 A more in 

depth study concerning the muscle properties of the rotator cuff can be seen in 

Appendix A. 
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Table 3.13: VHM Musculotendon Numerical Property Comparison 

Garner et al69 
Muscle Volume PCSA Fmax 

Name cm3 cm2 N 

Teres Minor 38.7 6.77 223.35 

Supraspinatus 89.23 20.8 687.84 

Infraspinatus 225.36 33.32 1099.61

Subscapularis 318.52 35.69 1177.93

This Study 
Muscle Volume PCSA Fmax 

Teres Minor 47.91 8.38 276.4 

Supraspinatus 88.23 20.61 680.29 

Infraspinatus 225.01 33.29 1098.42

Subscapularis 262.24 29.4 970.17 

Difference 
Muscle Volume PCSA Fmax 

Teres Minor 9.21 1.61 53.05 

Supraspinatus 1 0.19 7.55 

Infraspinatus 0.35 0.03 1.19 

Subscapularis 56.28 6.29 207.76 
 

It is our theory that the use of a linear elastic model may be the source of the error. 

Personal Communication with COMSOL suggested that a hyperelastic model maybe an 

alternative option for this particular set of geometries. The strain value being above 10% 

is one indication and a potential source of a lack of convergence. Furthermore, it is 

possible that the geometries themselves are creating singularities of very high values.74 

However, the use of a linear elastic model should still work under the circumstances of 

this study since the forces involved do not extend into the plasticity range.75 

Furthermore, the lack of a joint capsule allows the muscle to contract without restriction 

and made such dramatic deformities possible.  
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Future studies will include substituting the linear elastic model with a hyperelastic or 

viscoelastic one. Other studies have attempted this to varying levels of 

success.51,57,63,76-78 Additionally, this study focused on muscles undergoing active 

contraction. Future study will include testing if the linear elastic model would be better 

suited for passive muscle interaction. 

 

Alternative Attempts at Phase II and III Muscle Contraction 

 

The initial examination of muscle contraction of the muscles of the rotator cuff relied 

solely on the muscles maintaining the center of rotation for the humeral head. However, 

the removal of the error threshold and the extreme and erroneous deformation implied 

that the representation of the muscles alone was not sufficient. A small sphere at the 

center of the humeral head was created as a stand in for the other ligaments and 

cartilage structures that contribute to defining the shoulder’s center of rotation. This 

sphere as the center of rotation combined with the two different methods of modeling 

muscle contraction allowed for each scenario to solve successfully. 

 

For Phase II the amount of variation in the displacement was very low for both 

scenarios when broken down to their X, Y, Z components. For the prescribed 

displacement scenario, the average X, Y and Z was 0.82 ± 0.17 mm, 1.71 ± 1.39 mm 

and 0.11 ± 0.05 mm respectively. For the applied Fmax scenario, the average X, Y and 

Z was 1.3 ± 0.44 mm, 1.62 ± 0.87 mm and 0.22 ± 0.19 mm respectively. The CLOA had 

the shortest solve time which is not surprising due to it being the simplest model.  
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For Phase III the amount of variation in the displacement was very low for both 

scenarios when broken down to their X, Y, Z components. For the prescribed 

displacement scenario, the average X, Y and Z was 1.58 ± 1.37 mm, 1.23 ± 0.5 mm and 

0.32 ± 0.27 mm respectively. For the Applied Fmax scenario, the average X, Y and Z 

was 1.58 ± 1.37 mm, 1.23 ± 0.5 mm and 0.32 ± 0.27 mm respectively. Again, the CLOA 

had the shortest solve time which is not surprising due to it being the simplest model.  

 

Furthermore, the values for Von Mises stress, for both Phase II and Phase III were at 

their peak along the interfaces of the tendon and muscles. This is as expected because 

any actual force originates at this muscle/tendon interface. As the muscle actively 

contracts, the tendon passively transmits the force to the bone. 

 

Solve time varied drastically overall. The more complex the model, as measured as the 

number of tetrahedral elements and the number of boundaries that had a boundary 

condition, the longer the solve time which differed from an hour to several hours. This 

additional solve time may not be worth it as the differences for each scenario is just 

several millimeters. Unless certain geometries are critical to a simulation, it is our 

suggestion that the CLOA be used to model joint movements. It would be interesting to 

see if this hold true for muscles that contribute to a more dramatic movement, such as 

the bicep and elbow joint. It would be also interesting to add the element of time and 

model a timed activation and deactivation of each muscle as the rotator cuff (or any 

joint) worked as a unit on a temporal basis. 
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The examination of the role of material property stiffness went as predicted. The stiffer 

scenario saw a reduction in displacement and a reduction in von Mises stress. This was 

especially true for the contraction based on applied force. Differences using the 

prescribed displacement method of contraction were usually limited to one-hundredths 

of a millimeter. The data shows that with a stiffer muscle and tendons there is a 

reduction in the force distribution over the model. This stiffer soft-tissue acted as a 

damper and lessened the amount of force placed on the muscle/tendon interfaces. 

When the material properties for the muscle and tendon were looser or softer, there was 

an overall increase in movement in X, Y, and Z for the applied force method of 

contraction and an increase in the von Mises stress along the muscle/tendon interfaces. 

The amount of displacement for prescribed displacement was limited to hundredths of a 

millimeter while the amount of displacement from applied force varied to millimeters to 

tenths of millimeters difference. The most dramatic difference was in the uniform 

reduction or increase in von Mises stress. Stiffer materials reflected a reduction in stress 

while softer materials reflected an increase. The disparity in displacement between 

applied force and prescribed displacement is not too surprising. The soft-tissue shortens 

in relationship to the material properties stiffness and the force that is applied. The 

prescribed displacement method of contraction does not take that soft-tissues material 

properties into account. One concern for this experiment lies with the overall limited 

range the combined contraction of the muscles of the rotator cuff. Differences in 

displacement might be more evident on a joint with a larger range of motion. Future 

studies should examine this possibility. 



 

63 

For the injury experiment, there was a reduction in the number of elements which had a 

foreseeable reduction in the simulation solve time. The applied force method of 

contraction resulted in greater movement in X and Y but lesser in Z with the difference 

being within tenths of a millimeter. The von Mises stress increased for the applied force. 

These results infer that with the reduced number of splines, there is a reduction in the 

number of antagonistic force vectors which allowed for greater movement and an 

increase in the stress placed on the muscle/tendon interfaces. For the prescribed 

displacement, there was a decrease in the amount of displacement in X, Y and Z in 

millimeters and tenths of millimeters. This reduction in movement also coincided with a 

decrease in von Mises stress. This pattern infers that when using a ridged guideline of 

50% reduction in spline length to mimic muscle contraction, any loss of splines 

contributes to additional loss of movement. 

 

For both Phase II and Phase III, the consistency of the average about of displacement 

in the X, Y and Z coordinates implies a high level of stability in the model. This may be 

on account of the inclusion the sphere as a rigid body for the center of rotation. 

Furthermore, one of the chief purposes of muscles of the rotator cuff is to keep the 

shoulder stable. Both the sphere and the musculature may be working in conjunction 

here. A breakdown of the angular displacement would be of value here for further 

comparison and will be tested in future study. 

 

The examination of what role material properties had on the model reflect that stiffer or 

softer materials will behave similarly when applied force is used as the method of 
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contraction. Prescribed displacement, not surprisingly, does not take material properties 

into account and is consistent to the one-hundredth of a millimeter. It is recommended 

that applied force be used as the method of contraction to allow for the important 

anatomical and physiological antagonistic relationship of muscles which the prescribed 

displacement method ignores.  

 

The injury scenario presented a prime example of the important of spline placement and 

contraction method. When combined with applied force, the missing splines allowed for 

an increase in movement on account of the decrease in antagonistic aspects of the 

muscles. When combined with the prescribed displacement, there is an overall 

decrease in movement which shows how the presence or absence of splines reduces 

the displacement in X, Y and Z. Future studies will examine if these relationships 

continue on musculoskeletal joint combinations that have a greater range of motion.  
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CHAPTER 4: 

DISCUSSION AND CONCLUSIONS 

 

The purpose of this project was to examine how different levels of simplification and 

representation of muscle geometry can affect the performance of a finite element 

anatomical model using a commercially available finite element analysis (FEA) software 

package (COMSOL). This was examined by utilizing three different geometric muscle 

representations in conjunction with the Hill mathematical model and linear elastic 

material properties. The three different representations of muscle included a bulk, 

central line of action (CLOA) and spline model. The study was conducted in a series of 

phases. Phase I was a pilot study examining how the different 3-D representations of 

skeletal muscle behaved while being limited to simple geometric shapes. Upon 

completion of Phase I, Phase II and Phase III replaced the simple geometry with 

increasing complex anatomical meshes. FEA solve time and results for the three 

different scenarios were compared. It was the hypothesis of this study that the bulk, 

CLOA and spline representations of skeletal muscle, combined with linear elastic 

properties, would have statistically similar results for finite element simulation of muscle 

contraction. 
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Phase I 

 

Phase I successfully modeled and solved simplistic representations of skeletal muscle 

contractions within commercially available software. The calculations for force and force 

vectors as well as the linear elastic material properties were uniform across the 

scenarios. The data concerning element count and solve time performed as expected 

with the greater element counts correlating with longer solve times. However, for these 

mathematical geometries, even with the most complex geometry of the spline model, 

the time needed to solve the analysis was relatively short. These solve times were 

anticipated to increase in Phases II and III as the model complexity increased. 

 

An average displacement of Phase I was 63.49 mm and fell within the range of the 60 

mm – 70mm expected from the maximum contraction of a 200 mm muscle.62 This 

model was in a straight line along the x-axis and there were no joint mechanics 

involved. For each scenario, the von Mises stress displayed that the tendon acted as a 

damper in force transmission from muscle to bone as anticipated.62 The von Mises 

stress appears relatively stable as well with a 95% confidence interval of 39.71 N/cm2 – 

41.43 N/cm2 but there was an upward trend as the diameters of the muscle geometries 

narrowed. This trend may be on account of the greater relative deformation of the 

narrower muscle representation. The relative uniformity of the displacement and von 

Mises stress suggest that the different 3-D representations of muscle geometry are able 

to capture similar phenomena. These initial findings suggest that 3-D muscle 

representation, be it a bulk, CLOA or spline, may be equally valid when simulating 
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displacement and von Mises stress distribution, and therefore human motion as well. 

The ultimate displacement and deformation of the moving bone was strikingly similar. It 

remained to be seen if the jump from primitive geometric shapes to biologically created 

geometries would have rendered similar results.  

 

Phase II and Phase III 

 

In Phase II and Phase III, the level of complexity was increased with the simple 

mathematical geometry being replaced by the anatomical geometries of a human 

shoulder joint. The modeling of anatomical structures was based around the Visible 

Human Male dataset and the reconstruction of 3-D volumes from serially sectioned 

image data. The model construction and mesh creation resulted in higher element 

counts than those found in Phase I. The data concerning element count and its 

associated increase with the addition of larger and more complex geometries is not 

surprising. However, the default error threshold of COMSOL prevented convergence of 

a solution. When these error safeguards were removed, the resulting values for 

displacement and von Mises stress were well beyond anything anatomically possible.  

 

Troubleshooting efforts involved checking and rechecking the mathematical 

calculations, checking the model scales as well as the units for each numerical value. 

No errors in this regard were found. The musculotendon parameters of volume, PCSA, 

Fmax were all compared against known applications of the VHM dataset and were 

comparable.70 Any potential differences may be on account that Garner et al used 



 

68 

images at 5 mm slice increments, while this study used the full 1 mm slice increments.70 

Furthermore, since many calculations are a result from the same optimal fiber length 

values from literature, the difference in volumes would account for the difference in the 

resulting PCSA and Fmax values. The differences between the musculoskeletal 

parameters were statistically insignificant. 

 

It is our conclusion is that the use of a linear elastic model may be the source of the 

error. Personal Communication with COMSOL suggested that a hyperelastic model 

maybe a better option for this particular set of geometries. The strain value being above 

10% is one indication and a potential source of a lack of convergence. Furthermore, it is 

possible that the more complex anatomical geometries themselves are creating 

singularities of very high values and not allowing for the model to converge.74 However, 

the use of a linear elastic model should still work under the circumstances of this study 

since the forces involved do not extend into the plasticity range.75 

 

Due to the inability to solve the simulation for either Phase II or Phase III, adjustments 

had to be made. The added complexity of joint mechanics required the additional 

control of a center of rotation with in the humeral head. A rigid sphere was created at 

the center of the humeral head to serve as a center of rotation. Furthermore, in addition 

to the Fmax simulation of muscle contraction, a prescribed displacement method was 

also used for the bulk, CLOA and spline muscle representations for Phase II and Phase 

III. Additional experiments were conducted examining the role of material properties as 

well as a simulated shoulder cuff injury. 
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For Phase II and III, with an uninjured representation of anatomy and standard material 

properties, the amount of variation in the displacement was very low for both scenarios 

when broken down to their X,Y,Z components. For the Prescribed Displacement 

scenario, the average X, Y and Z was 0.82 ± 0.17 mm, 1.71 ± 1.39 mm and 0.11 ± 0.05 

mm respectively for Phase II and 1.58 ± 1.37 mm, 1.23 ± 0.5 mm and 0.32 ± 0.27 mm 

respectively for Phase III. For the Applied Fmax scenario, the average X, Y and Z was 

1.3 ± 0.44 mm, 1.62 ± 0.87 mm and 0.22 ± 0.19 mm respectively for Phase II and 1.58 ± 

1.37 mm, 1.23 ± 0.5 mm and 0.32 ± 0.27 mm respectively for Phase III.  

 

For the experiment with variable material properties, the relationship between applied 

force and the soft tissue rose to the forefront. The stiffer scenario, when combined with 

the applied force method of contraction, had an average decrease of displacement in X, 

Yt and Z of -1.08 ± 1.16 mm, -0.41 ± 0.41 mm and -0.12 ± 0.1 mm respectively. The 

less stiff scenario, when combined with the applied force method of contraction, had an 

average increase of displacement in X, Y and Z of 0.65 ± 0.74 mm, 0.61 ± 0.18 mm and 

0.78 ± 0.15 mm respectively. The average difference in movement was limited to 

hundredths or thousandths of a millimeter when either the stiffer or softer materials were 

combined with the prescribed displacement. The stiffer scenario had an average 

difference of movement in X, Y and Z of -0.023 ± 0.09 mm, 0.1 ± 0.13 mm and 0.01 ± 

0.06 mm respectively. The softer scenario had an average difference of movement in X, 

Y and Z of -0.0067 ± 0.06 mm, 0.12 ± 0.16 mm and 0.02 ± 0.052 mm respectively. The 

von Mises stress followed a typical pattern where the softer materials had an increase in 

stress levels, while the stiffer materials had a decrease in stress levels.80,81 The fact that 
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the prescribed displacement method of contraction did not take the material properties 

into account in regards to affecting the movement suggests that the applied force if 

more representative of an anatomical contraction. Furthermore, the applied force also 

allows the muscles to maintain their antagonistic or synergistic relationships which the 

prescribed displacement does not. These findings should be explored further to see if 

these results hold true for a joint with a greater range of motion. 

 

The injury scenario served as an example of how the 3-D spline representation can be 

used to mimic partial muscle tears. The missing splines, when combined with the 

applied force contraction, displayed how their absence allowed the resulting motion to 

increase in X and Y but decrease in Z. The reduced number of splines created a 

reduction in the number of antagonistic interactions and allowed for the greater 

movement. The prescribed displacement contraction for the injury scenario had the 

opposite effect and decreased the overall movement. Again, these findings should be 

explored further under a greater range of motion. 

 

Future directions will include substituting the linear elastic model with a hyperelastic or 

viscoelastic one. Other studies have attempted this to varying levels of success.51,57,63,76 

The hyperelastic and viscoelastic models should be compared against one another. 

Additionally, efforts will be made to find alternative ways to utilize the linear elastic 

models and see if comparison against the hyperelastic and viscoelastic models are 

possible. Furthermore, this study focuses on muscles undergoing active contraction. 
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Future directions would also include testing if the linear elastic model would be better 

suited for passive muscle interaction. 

 

It should also be mentioned that joints are not just muscles and bone, but include 

ligaments, synovial fluid, articular cartilage and so on. All these anatomical structures 

contribute to the natural center of rotation for a given joint. It would be of benefit to 

compare an artificial center of rotation (like the internal sphere) to a more complex 

anatomical model that relied on the other supportive tissues of the joint. 

 

The goal of this study was to use commercially available FEA software to compare the 

different geometric representations (bulk, CLOA and spline) of human skeletal muscle 

and the effect these representations had on muscle contraction. For Phase I, the results 

supported the hypothesis which showed that a linear elastic model when combined with 

a primitive set of geometries resulted in similar results across the bulk, CLOA and spline 

scenarios. After constructing a center of rotation for the shoulder joint, Phase II and 

Phase III suggests that the introduction of biological geometries, combined with the 

linear elastic model for skeletal muscle further supports this hypothesis.  

 

The overall uniformity suggests a large amount of stability in the shoulder joint. 

However, this may be a result of the artificially constructed center of rotation. The CLOA 

had the shortest solve time which is not surprising due to it being the simplest model. 

The fact that it solved faster by an hour to several hours versus the Bulk and Spline 

scenarios implies its usefulness to joint movement studies. CLOA muscle 
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representation would be of great use in studies such as gait analysis and kinematic 

simulation.81 That being said each 3-D representation has its own advantages and 

disadvantages depending on what is being simulated. The bulk and spline 

representations would have a greater use in injury simulation and analysis.82 Bulk 

muscle representation would lend itself to scenarios of direct muscle impact analysis or 

compression analysis and the affect it has on a muscle’s ability to contract.73,83 Bulk 

modeling would also lend itself to modeling partial tears by removing aspects of the 

tendon/bone interface and see how it affects force transmission. Spline modeling, like in 

the injury analysis in this study, could also be used to model partial tears as well while. 

Furthermore, spline modeling would be a representative way of examining muscle fiber 

behavior under contraction.50,84 

 

In conclusion, this study suggests that muscle behavior is stable regardless of 3-D 

geometric representation. The experiment in material property variability infers that the 

applied force method of contraction is preferred to the prescribed displacement 

contraction method in that it allows for a more antagonistic and synergistic relationship 

between muscle forces. The results from the injury experiment further supports this idea 

while also providing an example of a practical application. This information is important 

for engineers or anyone who researches joint biomechanics such as orthopedics, who 

can now with confidence use 3 different representations of muscle models 

interchangeable for their experimental analyses. In research and development, both in 

industry and in academia, time versus cost while maintaining high level accuracy is a 

primary concern. The results from this study show that researchers can now use a time-
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efficient model without concern of drastically reducing the quality of their muscle 

analyses. Which model just depends on what aspect of musculoskeletal mechanics, 

such as movement or injury simulation, they want to simulate. 
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Appendix A: 

Rotator Cuff Muscle Volume 

 

A.1 Abstract 

 

Skeletal muscle architectural properties plays a critical role in the calculation of the 

potential behavior of individual muscles. Characteristics such as volume, physiological 

cross-sectional area (PCSA), optimal fiber length and muscle pennation angle all play a 

significant part in the calculation of how much force a muscle can generate. 

Furthermore, muscle architectural properties influence one another. A comparison was 

made with the Visible Human Male’s (VHM) rotator cuff muscles of this study, with other 

studies that utilized the VHM as well as studies that measured muscle architecture in 

both cadavers and living people. 

 

A.2 Introduction 

 

Skeletal muscle architecture directly influences how a muscle behaves. The amount of 

force a muscle can generate, the influence fiber direction has on force generation, the 

amount of excursion possible, the speed of contraction can all be determined by muscle 

architecture. Muscle size and strength varies from person to person so differences are 

to be expected. However, certain architectural properties used in this study seemed 

slightly high and further examination was undertaken.  
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Due to its role in the calculation of PCSA, muscle volume was of chief concern in this 

study. Muscle PCSA multiplied by the muscles specific tension constant directly 

determines the potential maximum force (Fmax) a muscle can generate. However, there 

is an accepted range of muscle specific tension PCSA is calculated by taking the total 

volume of a muscle and dividing it by the optimal muscle fiber length.21,22,85 The muscle 

volumes of the VHM’s supraspinatus, infraspinatus, teres minor and subscapularis used 

in this study were compared against several other studies that utilized the VHM as well 

as studies that measured muscle architecture in both cadavers and living people.  

  

A.3 Materials and Methods 

 

A.3.1 Data Set 

 

The anatomy for this study was created based on the National Library of Medicine’s 

(NLM) Visible Human Male (VHM) dataset from the Visible Human Project. The entire 

dataset is available for download upon request from the NLM’s website. In total, the 

dataset consists of 1,878 slices as a tagged image file format (tiff) each with a resolution 

of 1760 x 1024. Each slice is 1 millimeter thick with a pixel size of 0.3528 millimeters. 

The slices are numbered in a fashion ranging from 1,001 to 2,878.28,86 A segmented set 

of the VHM dataset was made available and utilized to facilitate the creation of 3D 

geometries. The initial segmentation was conducted by hand in Adobe’s Photoshop.  
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Every structure segmented was assigned its own red, green and blue (RGB) value. This 

was a lengthy process that took a number of hands a considerable amount of time.  

 

A.3.2 Models 

 

The 3-D geometry was created via a multistep process within Mimics by Materialise. 

The images slices relevant to the scapula, humerus and the associated structures of the 

rotator cuff were imported into Mimics. This range began with image 1260 and extended 

through 1610 for a total of 351 images. The initial rough 3-D models of the 

supraspinatus, infraspinatus, teres minor and subscapularis, associated tendons and 

bones were created using the tessellation algorithm native to the software and exported 

as stereolithographs (STLs). Figure A.1 contains an example of some of the initial 

“rough” results from the segmented set.  

 

Upon review, it was decided that an additional segmentation refinement step be 

conducted. An unsegmented VHM dataset was imported into Mimics. The STLs of the 

geometries of interest were imported into this file. Masks were generated from the 

imported geometries to use as a guide and a springboard to improve on the 

segmentation. The resulting masks segmentations were edited and new 3-D models 

were generated. Figure A.2 contains an example of the segmentation editing. This 

editing involved the removal or addition of pixels that belong to their respective  
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structures. These models, once again, were exported as STLs so they could be 

imported into 3-matics for remeshing and further mesh cleanup.  

 

 

Figure A.1: Initial rough geometry. 

 

Mesh clean up began with the wrapping of each geometry individually. This process 

closes any holes that may be present and makes a watertight mesh. Further cleanup 

involved the searching for and subsequent removal of any overlapping or intersecting 

triangles. The rotator cuff muscles and tendons were connected to the scapula and  

 

 



 

90 

Appendix A Continued 

 

humerus as a non-manifold mesh. Origin and insertion locations for each representative 

muscle was determined from personal knowledge, the VHM dataset as well as 

experimental results found in literature.68,69 The muscle volumes were recorded for later 

comparison.  

 

 

Figure A.2: Segmentation Mask Editing and Cleanup 
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A.3.3 Dissection 

 

A large adult donated male cadaver was selected as a source for comparison. The 

cadaver has been fixed by the Anatomical Board of the State of Florida. The left arm 

was skinned, and removed from the body. The scapula and the muscles of the rotator 

cuff was isolated and the overlying subcutaneous soft tissues was removed. Using 

sharp and blunt dissection the supraspinatus, infraspinatus, teres minor and 

subscapularis were removed from the bones. The tendons were cut from the muscles to 

isolate the muscle tissue.  

 

The volume of the muscles was captured using water displacement. A 1000 ml 

graduate cylinder was filled to 600 ml. Each muscle was placed inside the graduated 

cylinder and the level of water displacement was recorded. The cylinder was cleaned 

and refilled between each measurement. The subscapularis needed to by bisected in 

order to fit inside the cylinder. The muscle volumes were recorded for later comparison. 

 

A.3.4 Literature 

 

Human upper limb architecture is of great interest of researchers of biomechanics, 

orthopedics and kinesiology. The rotator cuff receives a high level of academic scrutiny 

and the volumes, PCSA’s and other muscle architectural properties have been recorded  
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in various journals and book chapters. These studies acquired their information from a 

variety of sources including cadaveric dissection87-90 and medical imaging.91-93 The 

subjects of these studies included both male and female individuals with a range of 

ages. Data from these studies was compiled for comparison against the muscle 

architecture of the VHM. 

 

A.4 Results 

 

The volumes acquired from the VHM modeling process, cadaveric dissection and 

literature review was compiled and compared. A representative image of the final 

muscle geometries can be seen in Figure A.3. The data of the supraspinatus, 

infraspinatus, teres minor and subscapularis can be seen in Table A.1. 
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Figure A.3: Final Muscle Geometries
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Table A.1: VHM Muscle Numerical Volume Comparison 

Muscle This Garner Cadaver Peterson Wood Ward Keating Tingart Lehtinen 

Name Study et al70 Dissection et al88 et al87 et al89 et al90 et al91 et al93 

Supraspinatus 88.23 89.23 55 31.68 39.33 35.9 23 36 36 

Infraspinatus 225.01 225.36 175 80.256 85.21 82.4 44 - - 

Teres Minor 47.91 38.7 45 11.62 24.58 22.4 12.4 - - 

Subscapularis 262.24 318.52 220 - 121.26 107.5 53 99 99 
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A.5 Discussion and Conclusions 

 

The resulting VHM volumes for the supraspinatus, infraspinatus, teres minor and 

subscapularis was larger in all comparisons excluding the Garner et al study.8 The 

range of the muscle volumes from the literature review for supraspinatus, infraspinatus, 

teres minor and subscapularis was 39.33 – 23 cm3, 85.21 – 44 cm3, 24.58 – 11.62 cm3, 

and 121.26-53 cm3 respectively. These are all well below both the VHM volumes from 

this study, the Garner et al study as well as the cadaver dissection study. The volumes 

from this study was closest to the Garner study with the volumes of the supraspinatus, 

infraspinatus, teres minor and subscapularis being within 1.13%, 0.16%, 19.22% and 

21.46% respectively.  

 

The cadaver study as well as the literature review displays the range and variability in 

muscle sizes from person to person. The majority of the data from the literature was 

from an elderly population, and often an equal mix of male and female subjects. This 

may account for the low average muscle volumes of these studies.87-93 The larger 

volumes of the VHM may have been on account that the donor was a comparatively 

young and muscular man. It is possible that the donor for the VHM was naturally larger 

than elderly donors from literature. An additional aspect that may influence the volumes 

of the VHM musculature may lie in the freezing process involved in the creation of the 

VHM dataset. Freezing artifacts and embalming artifacts may have altered the soft  



 

96 

Appendix A Continued 

 

tissue. Other studies have expressed concerns regarding deformation, swelling and 

misalignment of images.94  

 

The disparities between the VHM muscle volumes of this study and the Garner et al 

study may be on account of the differences in slice-thicknesses used in each study. 

This study utilized all the slices available, which allowed for a slice thickness of 1 mm. 

The Garner et al study used a slice thickness of 5 mm. The absence of all the available 

slices could account for the volume differences in the muscles, especially the teres 

minor and subscapularis. 

 

Future studies should use medical imaging to capture muscle volumes and architectural 

properties from a wide range of ages and body types. Cadaveric studies are more often 

than not based on an elderly population. Medical imaging, be it magnetic resonance 

imaging or computed tomography would provide an in vivo dataset without the age 

limitations of cadaver studies. 
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